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ABSTRACT 

Two computer programs for shuttle reentry trajectory optimization a re  

listed and described. Both programs use the conjugate gradient method a s  

the optimization procedure. The Phase I Program is developed in Cartesian 

coordinates for a rotating spherical earth, and crossrange, downrange , maxi- 

mum deceleration, total heating, and terminal speed and altitude a r e  included 

in the performance index. The Phase I1 Program is developed in an Euler angle 

system for a nonrotating spherical earth, and crossrange , downrange, total 

heating, maximum heat rate , and terminal speed, altitude, and flight path 

angle a r e  included in the performance index. The programs make extensive 

use of subroutines so that they may be easily adapted to other atmospheric 

trajectory optimization problems. 
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C H A P T E R  1 

INTRODUCTION 

The forthcoming Space Shuttle Program wi l l  involve vehicles which 

possess both rocket and aircraft characteristics. Because of the interplay 

of gravitational , thrusting , and aerodynamic forces , the trajectories that 

the vehicle will  fly a r e  more complicated than the trajectories of the Saturn- 

Apollo class. Thus, the need exists for efficient , reliable shuttle trajectory 

optimization programs. 

This report describes two computer programs which were generated 

for shuttle reentry. 

emphasis shifted from a small, low-crossrange, straight-wing orbiter to a 

larger , high-crossrange , delta- wing orbiter. This definitely influences the 

reentry trajectory in that the straight- wing trajectory usually encounters 

the 3g deceleration constraint whereas the delta- wing trajectory rarely (if 

ever) encounters the 3g-constraint but instead has high heat-rate problems. 

Thus, instead of making a large cumbersome program for all possible ve- 

hicles, two programs were developed. Since the Phase 11-deck was devel- 

oped after the Phase I-deck, it has the advantage of some improvements 

learned in the development of the Phase I-program. 

During the time period of this contract, the national 

It has been noted by numerous investigators in the last two years that 

shooting (or initial Lagrange multiplier guessing) iteration schemes have 

been almost useless in determining shuttle reentry trajectories. There ex- 

ist other techniques which might be applicable to the problem and they a r e  

briefly described below: 

1) Classical Gradient Method: This method iterates on the total con- 

trol  function and does not require any second-order information 

(i. e. , second-derivatives of the Hamiltonian). This method is 

well-known for  having excellent properties far away from the solu- 

tion, but slow convergence near the solution. With respect to 

boundary conditions, either penalty functions'" o r  projections' may 

*Numbers refer to listings in the References section. 
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be employed. A modified gradient projection approach for shuttle 

reentry is under development a t  TRW- Systems3. 

Second-Order Gradient Method: 

tion space Newton’s method which iterates on the total control 

function and requires fu l l  second-order information. The method 

is described in Ref.4, and a shuttle-version of the program is in 

use a t  NASA-Manned Spacecraft Center5. It has been found that 

although this program obtains accurate trajectories and control 

histories , the deck is difficult to work with and modify, and re- 

quires extremely long computer time. 

Conjugate Gradient6 and Function-Space Davidon’ Methods: These 

methods iterate on the total control function and do not require any 

second-order information. These methods a r e  mainly motivated 

by deficiencies in the classical gradient and second-order gradient 

(or function space Newton) methods, 

first-order information and may have better convergence charac- 

teristics near the minimum than the classical gradient method. 

This study involved the generation of two conjugate gradient pro- 

grams. It appears that the function-space Davidon method needs 

further analysis before it should be employed in a shuttle computer 

pro gram. 
Parameter Optimization Methods: 

efficient parameter optimization techniques have been popularized, 

e. g. , conjugate gradient (CG), Davidon- Fletcher- Powell (DFP)vari- 

able metric. These schemes have proven their worth, and the 

D F P  method is probably the most popular parameter optimization 

scheme in use today. Both the CG and D F P  methods a r e  available 

in Fortran subroutines’. The D F P  method has been applied suc- 

cessfully to shuttle optimiaation by Johnson and Kamm’ ,lo. They 

represent the control variables by sequences of straight line seg- 

ments and then use D F P  to iterate for the optimal slopes of the seg- 

ments subject to continuity and inequality constraints. By comput- 

ing their gradients numerically, the deck is easily modified to 

This method is essentially a func- 

That is , they require only 

In the last decade a number of 
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include additional parameters, different vehicles, and various 

missions. Thus, for deeign purposes, this is a very efficient ap- 

proach. 

From the discussion above of the various approaches to shuttle opti- 

mization, it would appear a t  first glance that parameter optimization is the 

superior iterative procedure. 

case. However, the parameter optimization approach requires either prior 

knowledge of approximate optimal control histories or an undeterminable 

amount of working time devoted to selecting workable but accurate repre- 

sentations for the controls. In reentry this may be especially difficult be- 

cause a change in terminal boundary conditions may cause a completely dif- 

ferent bank angle control, and in many cases the bank angle w u l d  require a 

large number of segments to approximate it adequately. Thus, the para- 

meter optimization approach is by no means automatic o r  even desirable in 

some cases. 

For preliminary design this is probably the 

Because of the deficiencies noted above for the parameter optimization 

approach, the need still exists for a relatively flexible and efficient function 

space technique. At the present time it appears that both the projected 

gradient and the conjugate gradient methods a r e  the leading candidates for 

such a scheme, and .which scheme is best is probably problem dependent. 

For example, the projected gradient technique is probably best for problems 

,which a r e  strongly influenced by boundary conditions and do not contain 

singular a rcs .  

lems with singular a r c s  and/or problems which exhibit slow convergence 

near the minimum with a standard gradient technique, However, not as 

much work has been done with the conjugate gradient technique as the pro- 

jected gradient technique, so improvements in the conjugate gradient ap- 

proach a r e  occurring more frequently than in the projected gradient method. 

It should be noted that The conjugate gradient and gradient projection tech- 

nique have been combined", but the results were not promising. However, 

there may exist more efficient ways of combining the two techniques, and, 

thus, a "projected conjugate gradient" technique may be feasible. 

The conjugate gradient technique is probably best for prob- 



C H A P T E R  2 

THE CONJUGATE GRADIENT METHOD 

In this chapter, a tutorial treatment of the conjugate gradient method 

wi l l  be given in both finite- and infinite-dimensional spaces. The methods 

for treating inequality constraints in the programs a r e  discussed, also. 

2 .1  Finite-Dimensional Conjugate Gradient Method 

Consider the problem of minimizing 

where x 3 (xl ,. . , ,x ) is an element of a bounded, connected, open subset 

of Rn and f E C1. If equality and/or inequality constraints a r e  present, it is 

assumed that they a r e  incorporated into (2.1) by means of penalty functions. 

n 

Before we develop the algorithm, let us consider a few general remarks 

about the minimization of a quadratic function, Consider 

T q 3 x  Ax, 

where x E Rn, A is a positive definite matrix. The contours of constant q- 

values a r e  n-dimensional ellipsoids centered on the global minimum x = 0. 

In 2-space, the eccentricity of the elliptical contours is dependent upon the 

relative magnitudes of the eigenvalues of A; the contours are  circular if the 

eigenvalues a r e  equal and the contours become more eccentric as  the ratio 

of the eigenvalues increases from one. Of course, similar results a r e  true 

in n-space. 

If the contours of (2.2) a r e  noncircular, the gradient method (with a 

one-dimensional search) wi l l  take an infinite number of iterates to converge 

to the minimum if the method does not converge on the first iterate. (If the 

initial guess is on a principal axis of the n-dimensional ellipsoid, then a 

single gradient step results in x = 0.) On the other hand, no matter what the 

eigenvalues a re ,  Newton's method wi l l  converge in one iterate, 

The reason why the quadratic problem is of interest is that in the termi- 

nal stages of an iterative minimization of many nonlinear functions the 

4 
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the function may be well-approximated by a second-order expansion. 

an efficient algorithm for general functions should have good convergence 

characteristics for quadratic functions. A s  noted above for quadratic func- 

tions, Newton's method is excellent in a l l  cases, while the gradient method 

is strongly problem dependent. However, Newton's method requires the 

computation of second-order information while the gradient method requires 

only first-order. In addition, for general nonlinear functions, Newton's 

method may diverge whereas the gradient method wi l l ,  a t  least, never re- 

sult in an iterate which increases the quantity to be minimized. 

Thus , 

Because of the properties discussed above , researchers in the 1950's 

attempted to develop techniques which combined the advantages of the grad- 

ient and Newton methods while minimizing their disadvantages. With re-  

spect to the quadratic minimization problem, two techniques with the follow- 

ing properties were developed: (i) the methods a r e  stable, (ii) the minimum 

is obtained in a t  most n iterations, (iii) no second-order information is re-  

quired. The methods a r e  the conjugate gradient method12 and the Davidon 

variable metric method13 (or Davidon- Fletcher- Powell14 method). 

With respect to general nonlinear functions, the methods retain prop- 

erties (i) and (ii) mentioned above. For certain classes of functions, rates 

of convergence a r e  known for a l l  of the methods mentioned except the D F P  

method. These show that when the methods work, Newton should be faster 

than the CG method, and the CG method should be faster than the gradient 

method. However, Newton's method does not possess either property (i) or 

(ii) mentioned above. 

The CG formula wi l l  now be stated, the sequence of steps required in 

the development of the formula w i l l  be outlined, and then the steps wi l l  be 

developed in detail. The CG algorithm is as follows: 

= f  
X '  

i- 'J( 

T 
gJ+l gJ+l \ 
T ) 

gJ gJ 
( 2 . 3 )  

(3) xJ+l = XJ - aJpJ. (aJ 10) (2.4) 
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In the formula above, x is an n-vector, g is the n-vector gradient, p is 
J J J 

the n-vector search direction, and ct is a scalar. J 

The formula development involves the following sequence 

with p - + b J ,  and devise a J+ 1 = X j  - U j P j  

J’ 

J - gJ Assume x 

defining b 

Show that gJTbJ = 0 implies the method wi l l  be stable. 
T 

of steps: 

means for 

Show that the largest decrease in f is obtained if gJ i l  pJ = 0. 

Note that (B) and bJ CJpJ- imply (C) ,  where C is a constant to be 

defined. 

Show that finite convergence for the quadratic function f = x Ax is 

J 

T 

T 
I J  guaranteed i f  p A p = 0 (I # J), i. e .  , the search directions 

A- conjugate. I ’  
I t  

Combine al l  of the above steps to sh0.w that 

n where<g g g g is an inner product in R . The inner J ’ b ’ : J  

a r e  

(2.5) 

product 

notation wi l l  be used from here on instead of the transpose notation. 

Let u s  now develop the results noted 

assume a form for the update formula 

X J+ 1 = x J -  QJPJ 

PJ = g J + b J ’  

in steps (A) to (F). First, we 

( 2 . 6 )  

(2 .7 )  

The motivation for this form is that the method is basically a gradient 

method with a correction vector (i. e . ,  bJ) which, hopefully, w i l l  aid the con- 

vergence characteristics of the gradient method in the neighborhood of the 

solution. The only undefined quantities in Eqs (2.6) and (2.7) a r e  ct and b 

The scalar oJ wi l l  be determined by a 1-D search in each iteration, so the 

only quantity which must be characterized is the n-vector b 

J’ J 

J’ 

PROPERTY 1: If 

(Z. 8 )  
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then the method is stable. 

Proof: Expand f(xJ+l) about f(x ) to first-order: J 

For (Y 

f(x ) is <gJ,bJ> = 0 .  J 

small, a sufficient condition for f(x 
J J+ 1 

) to be less than o r  equal to 

Note that Property 1 is a sufficient condition for stability. Thus, 

there exist numerous possibilities for techniques which could also be stable; 

one need only insure that the interaction of the two terms on the right-hand 

side of Eq. (2.9) be negative (when the first-order expansion is valid). 

PROPERTY 2: Let ty be the value of the search parameter which minimizes 

f (xJ + a p  J).  Then 

J: Proof: By definition of ty 

(2.10) 

I 
“J J+ 1 “J 

PROPERTY 3 :  If Eq. (2.8) holds and 

- (J = l , z ,  . . .)  (2 .11)  b~ -. ‘JPJ-I 

(where C # 0 is a scalar to be defined) , then Eq. (2. 10) is satisfied. 

Proof: By Eq. (2.8): 

<gJ+lJ bJ+l > = o  +< gj+i J‘J+~~J’ = 

Thus , Eq. (2.10) is satisfied .when C f 0. I J+ 1 

Because of Property 3 we shall assume that the correction vector , 

bJ, is linearly related to the previous search direction, i. e. , we shall as-  

sume that b is defined by (2.11). In this case the only thing that remains . 
is the characterization of the constant C J ,  

J 
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l ~ l t O l ~ l ~ ~ l ~ ' l ' Y  4:  (lonsiclc!r f 7 x Ax, where A is positive definite. If  the 

search directions a re  A-conjugate (i. e. , pI ApJ = 0,  I # J) and Eqs. (2.6) 

and (2.10) hold (or, equivalently , (2.6), (2.8) , (2.1 1)) , then the global mini- 

mum x = 0 of f is obtained in a t  most n iterations. 

Proof: At the unique global minimum of f ,  the gradient g = Ax must equal 

zero. = 0,  

then the property is proved. Thus , assume go,.. . , 
ate,  we have 

'r 
T 

If in the application of the algorithm either go, gl , . . . , o r  gn- 
# 0.  At each iter- gn- 1 

(2.12) J' g = A x  J 
By repeated use of Eq. (2.6) we have: 

n- 1 

x = x + c (Yipi n J+1 i=J+l 

for any J E (0 , . . . ,n-2}. From Eq. (2.11): 

+ criAp.. 
n- 1 

i= J+l 

- 
1 gn - g ~ + i  (2.13) 

The inner product of g and pJ is n 

n- 1 

< g n J P b  = <gJ+l "J> + i= c J+l Qi<Pi,AP? (2.14) 

The first term in this equation vanishes because of Eq. (2. l o ) ,  and the 

summation vanishes because of the A-conjugacy property. Thus , 

<gn J P? = 0. (J = O J 1  ,.. . ,n-2) (2.15) 

By Eq. (2.10) we also have 

Equations (2.15) and (2.16) may be written in matrix form a s  

(2.17) 

It can be shown that n A-conjugate vectors a r e  linearly independent (note 

that A-conjugate is a generalization of orthogonality) , and thus , Eq. (2.17) 

implies 
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We now have enough information to define the constant C in Eq. (2.11). J 
T PROPERTY 5: Consider f = x Ax, where A is positive definite. If: the 

update formula is defined by Eqs. (2.6)  and (2. 11), the search directions a re  

A-conjugate, and LY and C a r e  chosen to give the maximum decrease in the 

function f ,  then 
J J 

Proof: At a given iteration f is given by 

f[xJ + QJgJ ' pJcJPJ-ll. 

At a minimum of f .with respect to (Y J J  C J: 

<gJSgJ> + cJ<pJ-l*gJ> + (YJ<PJSAP? = 

which implies 

= - < g  J 9 gJ> /<pJ a A P 3  ( 2 . 2 2 )  

Before we obtain the desired result, note that Eqs. (2.20) and (2.21) imply 

(yJ 

To obtain the expression for C J J  'we first form the inner product of 

with Ap J- : - 
g j  - p j  - Cjpj-1 

<gJJAPJ-l> =<PJ,APJ-l> - CJ<??J-l,APJ-l> ' (2.24) 

The first inner product on the right vanishes because of A-conjugacy. The 

desired result is obtained by substituting (g - gJ-l)/aJ-l  for ApJ-I on the J 
for -<p ,ApJ - on the right: J- 1 left and <g J- 1 J g J- 1' 1":- J, 
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A s  noted previously, the algorithm defined above, along with the 

Davidon- Fletcher- Powell method, a r e  available a s  Fortran subroutines in 

Ref. 8. 

2 . 2  Infinite-Dimensional Conjugate Gradient: Unconstrained 

In this chapter the conjugate gradient method is treated separately in 

finite- and infinite-dimensional spaces because of applications. However, 

one could describe the method in a Hilbert space setting and, thus, cover 

both the finite- and infinite- dimensional cases in one development. 

the approach taken in Refs. 15, 16, and 17. 

Such is 

The main references for Sections 2 . 2  and 2.3 a r e  Refs. 6 and 18. 

this section we shall consider problems which do not possess control or 

state variable inequality constraints; these .will  be included in the next sec- 

tion. 

In 

The infinite- dimensional problem which we a r e  mainly concerned with 

is the following: 

BASIC PROBLEM: Determine the control u* (t), t E [to, tf], which  minimizes: 

J[u] = T(tf,xf) + L(t,x,u)dt (2.25) 
t o  f 

subject to: 

x = f(t,x,u) , x(t0) = xo (2.26) 

+(tf,xf) = 0 , (p-vector; p 2 n + 1) 

where x is an n-vector, u is an m-vector. 

(2.27) 

The algorithms in this report treat all of the terminal conditions (i. e. ,  

Eq. (2 .27))  except one by the method of penalty functions; the remaining 

condition is employed a s  a stopping condition. Without loss of generality, 
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assume that 

= O ,  (2.28) 

and that x1 (t) is a variable which: (i) cannot reach the value xlf until the 

terminal portion of the trajectory (e. g. , a specified altitude or Mach number 

in reentry) 

probably have a nonzero derivative at  tf. 

stopping condition for the iterations. 

(ii) wi l l  always be reached in a reasonable time, and (iii) wi l l  

In this case, xl(tf) = xlf is a suitable 

Define 

(2 .29)  

N 

where i t  is assumed, also , that +(t ,x ) does not depend upon xlf (this is the f f  
usual case in trajectory analysis; the assumption is not restrictive, how- 

ever) and the 

P . >  0 ( i =  l , . . . , p -  1) (2.30) 
1 

are selected by the investigator. With the definitions (2.28) and (2.29) w e  

have the following problem: 

BASIC PROBLEM WITH PENALTY FUNCTIONS: Determine the control 

u*(t) , t c  [to, t,], which minimizes 
t 
nf 

subject to: 
x = f ( t ,x ,u) ,  x(t0) = xo 

q t f )  = Xlf 

(2.31) 

(2.32) 

(Note: tf is usually not specified. ) 



I 3 ( b f ‘ o ~ * c ?  w e  list thct formulas in the conjugato gradient method , we shall 

define a Hamiltonian function and adjoint variables which a r e  useful in any 

function space iteration scheme. First, define 

T H L(t,x,u) + X f(t,x,u), (2.34) 

‘where the n-vector X ( t )  w i l l  be characterized later. With this definition we 

have : 
T. 

J[u] = +(tf,xf) + ffHit,x,u,X) - A x]dt , (2.35) 

to 

where the performance index (2 .31)  has been augmented to include J X  tf T (f-k)dt. 
ti 

Let u (e 1 (t) be an initial control estimate, and integrate k = f[t,x,u (0) (t)] 

forward from x(to) = xo to form a corresponding trajectory, x (9 (t). Suppose 

(0) there exists a vector X (t) and define 

(2.36) (1 ) (0) 
U‘ (t) = u (t) + 6u(t) 

(1 ) (1 ) x (t) = x (t) + 6x(t). 

Expand J[u (1 1 ] about J[u (0) ] to first-order: 

t o  
Integration by parts of the third term in the integrand gives 

(2.37) 

(2.38) 

(2.39) 

(2.40) 
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subjcxt  to: 

dx,f = 0. (2.41) 

W e  now characterize A(') (t) so that a stable iterative algorithm is defined. 

(2.42) 

(2.43) 

(2.44) k(O)(t) -Hx[tJx (0 )  (t) ,u (0 )  (t),A (0)  (t)]. 

Definitions (2.42), (2.43) (2.44) uniquely define the vector A (0)  (t) and it is 

formed by a backward integration. 

Substitution of Eqs. (2.41)- (2.44) into Eq. (2.40) gives 

t 

A J [ ~ U ]  = fH'"" U du dt. 

to 

(2.45) 

(0 )  The quantity H 

the gradient method is defined by 

(t) is the gradient in function space for this iteration, and 
U 

U ""(t) = u(J)(t) - CY H(J)( t ) .  J u  (2.46) 

(Note that i f  tf (J+1) > t.J'J then a scheme must be devised to define u (J+ 1 

(J) (J+l)], but there a r e  numerous ways of doing this. ) on the interval [t 

A s  with the parameter optimization problem, there exist numerous tech- 

niques which result in a stable method, e. g. , one need only guarantee that 

the first-order expansion term dominate the expansion for J[u (J+l)] and that 

6u be chosen in such a way that 

f ' tf 

In analogy with parameter optimization, a possible choice for du is 

6JJ)(t) = -CY,[HIJ)(t) + c Jp(J-l)(t)] , 

(2.47) 

(2.48) 
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where a > 0 is the search parameter, p (J-l)(t) is the previous search di- 

rection with the property $ HU 

fined. As shown in Ref. 6, the following function space conjugate gradient 

scheme satisfies these conditions: 

UNCONSTRAINED CONJUGATE GRADIENT ALGORITHM 

f (J)T (J-1) t J 

p dt = 0 ,  and C is a constant to be de- J 
to 

1) Guess u(O)(t) on [ t o , t f  (0 )  1 . 
2)  Compute: 

p(J-l)(t) 

3) Perform 1-D search to determine a in the formula J 

U (J+l)(t) = u(J)(t) - a ,JJ)(t). 

4) Check on appropriate cutoff criterion (e. g. , 2 E); 

(2 .49)  

(2.50) 

5) Return to 2) .  

In Eq. (2.49) above, the constant which multiplies JJ-’) may be 

written a s  

where 

<a (t) , b (t)? f fa (tTb (t)dt 

is an inner product on the function space whereas 
t o  

T <a,b> a b 

(2.51) 

(2.52) 

n is an inner product on R . Thus, the formula is the same as the finite- 

dimensional formula; one need only interpret properly the gradient and 
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inner product functions. 

In Ref. 6, a few theorems concerned with the convergence of the func- 

tion space conjugate gradient method a r e  presented for both general func- 

tionals and functionals which result from linear-quadratic optimal control 

problems. 

sufficient for convergence) essentially requires that one show that the sec- 

ond variation is "strongly positive" (i. e .  , there exists a constant M > 0 such 

that for all admissible u, d u ,  d2J(u; 6u, 6u) 2 MI( 6u(12). 

For general functionals, the convergence theorem (which is only 

A s  with parameter optimization, the quadratic case plays an important 

role in functional optimization; again, the argument being that when the solu- 

tion is approached the general optimal control problem may be well-approxi- 

mated by a linear-quadratic optimal control problem (formed by expanding 

the differential equations and boundary conditions to first-order, and the 

performance index to second-order). 

resultant quadratic functional to be of the form 

The theorems in Ref. 6 assume the 

AJ = < d u ,  Ad+, , (2.53) 

where A is a positive definite, self-adjoint linear operator. Note that since 

6u is infinite-dimensional there is no reason to expect finite convergence 

even in a small neighborhood of the solution. 

puter, one is really only interested in a good rate of convergence since 

problems a r e  never converged to the limit. ) Reference 7 sho,ws how one 

may transform a class of linear-quadratic problems into the form of Eq. 

(Of course, on a digital com- 

(2. 53) .  

For the case of Eq. (2.53), Ref. 6 shows that the conjugate gradient 

method has certain desirable features which the classical gradient method 

does not possess. However, it has never been proved mathematically that 

the conjugate gradient step is better than the gradient step on every iterate. 

In fact the statement is probably untrue because of numerical experience 

which indicates that a gradient step every so often in a conjugate gradient 

algorithm (i. e. , a "reset" step) improves the convergence characteristics. 

Finally, a s  with general functionals, to &ow that the linear operator A in 
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Eq. (2.53) is positive definite usually requires a conjugate point test if the 

operator results from linearization of a nonlinear optimal control problem. 

2. 3 Infinite-Dimensional Conjugate Gradient: Constrained 

In this section, the modifications of the Basic Problem With Penalty 

Functions (Eqs 2.31 -2.33) and the Unconstrained Conjugate Gradient Algo- 

rithm to include state variable inequality constraints (SVIC) and control in- 

equality constraints 'will be presented. 

First ,  suppose that in addition to the equality constraints (2.32) ,  (2.33), 

the problem contains the SVIC's: 

Si(t,x) 2 0. (i = 1 , .  . . ,q) (2.54) 

There a r e  two main 'ways of treating an SVIC: 

(i) Transform the problem into a multiple-arc problem .with inter- 

mediate point equality constraints; this is the approach of Ref. 19. 

(ii) Augment the performance index to include the SVIC's by means of 
penalty functions; this is the approach of Ref. 1 .  

The main goal of the computer programs described in this report is to gen- 

erate reasonable, near-optimal reentry trajectories with a minimal amount 

of guessing and analysis required of the user. The (i) approach above re- 

quires knowledge of the location and the number of times the inequality con- 

straint boundary is encountered, which requires both analysis and additional 

programming by the user. Thus, the (ii) approach 'was chosen since this 

requires no additional programming and only the initial penalty coefficients 

must be estimated. 

If the SVICfs (2.54) a r e  present, then the performance index (2.31) is 

modified to 

where 
0 i f S i <  o 

= 
i f  Si 2 0 , 

(2.56) 
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and the constant penalty coefficients Ci(i = 1,. . , q) a re  selected by the in- 

vestigator. 

Second, suppose that inequality constraints 

G.(t,x,u) 2 0 (i = 1 ,..., r) 
which satisfy the following constraint condition a r e  present: 

1 

2% . . .  
a u1 

GI 

0 

0 

0 . * * o  
G2 0 

G, 0 . . .  

(2.57) 

has rank r . (2.58) 

This condition is required to guarantee that the control may be determined 

from the appropriate Gi = 0 when a boundary is encountered. The condition 

is satisfied trivially if the constraints only contain control variables, e. g. , 
G = 1 - uz 2 0 and a r e  independent. 

Since the adjoint variables (or Lagrange multipliers) a r e  continuous 

across corners where control boundaries a r e  encountered, constraints of 

the form (2.57) may be treated directly with little modification of the pro- 

gram. Let u s  first describe the procedure for treating a constraint of the 
form (2.57) before we justify the method. 

CONTROL CONSTRAINED CONJUGATE GRADIENT ALGORITHM 

Suppose the control is a scalar and I u I 2 1; the generalization to 

more than one control and other control constraints is straightforward: 
th (J) 1)  At the beginning of the J iteration, ‘we have a control u (t) 

J E {0,1,2, .  . .). Define WJ {t: Iu (J) (t)l = 1). i. e.,  the set of 
(J) points where u (t) is on the boundary. Integrate forward 

k f[t,x,u (t)] to the stopping condition and set  A (t, ). (J) (J) (J) 

2)  Integrate A = -H [t,x (J) (t),x’J’, ~ ( ~ ’ ( t ) ]  backwards from tf (J) . 
(J) 

X 
(J) Evaluate HU (t) in the usual way on [to,tf 3. However, the inner 

product <HU (4 , Hu (J) > is defined by: 
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H (Jf dt. S U 
<HU (J) , H U  (J) > = 

tfl-W J 

(2.59) 

3)  Perform the 1-D search with Eqs. (2.49) , (2.50). 

In the search, truncate u (J+l) a t  the boundary if I~ (~+ l ' ( t ) ]  > 1, i. e. , 
for a trial (Y J: 

(J) (J) (J+l) 
if u(t)  - crJp(t) > 1 ,  set  u (t) = 1 (2. 60) 

(This step gives u s  the means for adjusting the set WJ from itera- 

tion to iteration. ) Return to (1) after CY and WJ+l a r e  determined. 

Let u s  now justify the approach listed above; the method is developed 

in Ref. 18. The main difficulties in generating a method for treating control 

constraints are:  (i) ensuring that the method is defined in such a way that it 

can converge to the true minimum ( and not a false minimum), and (ii) de- 

veloping a method consistent with (i) for defining < H U  ,HU >/<HU 

when the iterate has bounded subarcs. 

(J) (J) (J-l) (J-l)> 
,HU 

First, we shall consider how the algorithm should behave near the 

minimum. Suppose that the set  W is known beforehand, i.e. , the points 

t E [ t o , t  ] for which  u*(t) = +1 are known. Then, the algorithm need only be 

concerned with "fine-tuning" the interior control segments. In this regard, 

we would want HY' and JJ' to be such that it only changes the interior con- 

trol segments and not the boundary segments. Thus , in the computation of 

the coefficient of dJ-')(t) in Eq. (2.49) , the effect of the boundary a rc s  is 

not included because of the form of Eq. (2.59), and this rule is consis- 

f 

tent with requirement (i) above. 

In reality, we do not know the set  W beforehand , so 'we must devise a 

mechanism for the sets W to change from iterate to iterate and such that 

W -C W. This is accomplished by Step (3) of the procedure defined above; 

that is , the set  W is modified in the 1-D search. 

J 

J 



C H A P T E R  3 

PHASE I PROGRAM 

3 . 1  Basic Description 

The Phase I Program is designed to minimize a weighted performance 

index which includes the following effects: 

i. Crossrange 

ii. Downrange 

iii. Aerodynamic loading 

iv. Terminal total heat 

v. Terminal altitude 

The equations of motion a r e  written in a Cartesian coordinate system 

define d by : 

ff 
V 3 

A A A  
J =  K X I  

The Aerodynamic Angles a r e  defined by the following coordinate sys- 

tem: 

U 

19 
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- 
f i o  vR 

Ir X T J J  vR 
1q = 1p x - R 

F X V  
fi 
1 p =  - 

d 
dl 

tan cy = 2 tan p = i i i  , tan cy = 
dl ’ d3 t 

The state equations are”: 

- - -  vH. = v - VA 

where 7 
following assumptions: 

3 inertial velocity of the atmosphere. The equations involve the A 

a.  The relative velocity vector 7, is in the plane of the vehicle that 

produces the greatest l i f t .  

b. No aerodynamic moments exist about the center of mass.  

The performance index is 

where 

r = cross range 
C 

r = down range d 
1 if ( . ) > O  

0 if ( 0 )  S O ,  
U(*) = .  
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The Hamiltonian is 

3 . 2  Subroutine Map 

MAIN - ADOTB - 

+ x Q + P4( L2 ;-2 m - 9 4  Q 

ACROSB 

WPRJCG 
ADOTB ACROSB - ADOTB ACROSB - 

COSTFN - XLAMFN - OUTPUT FWDINT - R.K7 13 - 
I 

ADOTB 

ACROSB -ADOTB - ATMOS - AEROD DERIVl - I 
ADOTB - ACROSB 

BAKINT - RK7 13 -GMDFN 

I DERIVZ -DERIVl - ADOTB - ACROSB 

ACHOSB - ADOTB - ATMOS - AEROD 

SEKALF 
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3.3 Subroutine Descriptions 

MAIN: Reads in all necessary data, sets integration coefficients, computes 

initial values, and calls on the conjugate gradient subroutine (WPRJCG). On 

Return, MAIN prints out a message concerning the results of the iteration 

I 
I 
I A .  Namelist Input Data 

and prints out the control obtained by that iteration. 

PI = Tr 

RE = earth's radius 

XMU = p, gravitational constant 

OMEGE(3) = angular velocity of the earth 

AREA = aerodynamic reference area 

ECOEF = heating coefficient 

XO(3) = initial position vector 

VO(3) = initial velocity vector 

TO = initial time 

ALTF = desired f inal  altitude 

XMACH = desired f ina l  Mach number 

FLTANG = desired f inal  flight path angle 

QMAX = desired final heating value 

XMASS = vehicle mass 

IOUT = print frequency for forward integration 

IOUTZ = print frequency for backward integration 

IPRINT1 = print control flag 

IPRINTZ = print control flag 

DELTS = integration stepsize 

IKEY = call flag for output (see FWDINT) 

EKRMX = error tolerance for integration routine 

ERRMN = not used 

TCUT = upper time limit on trajectory 

EPST = cutoff tolerance for norm of control change 

EPSTF = not used 

EPSA = cutoff tolerance for integration altitude cutoff 
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EPSIT = cutoff tolerance on gradient norm 

ERR = cutoff tolerance for small cost change 

ITMAX = limit on number of conjugate gradient iterations 

ITMX = limit on steps in 1-D search 

KOUNTM = limit on iterations for altitude cutoff 

CSTR = guess of final cost value 

B = control bound (see SEKALF) 

P F U N  (4) = penalty coefficient vector 

CCOST (2) = coefficients in cost functional 

DTFM = maximum allowable final time change 

XDTFM = fraction of DTFM used to start  1-D search 

B. Control Vector Data 

IJKU = total number of control points 

U(IJKU,4) = control vector and time point 

WPRJC G: This subroutine controls the application of "he conjuga-z gradient 

algorithm. It calls the forward and backward integration routines, directs 

the one dimensional search, and updates the control vector and terminal 

time. It checks for algorithm termination on small cost change , total num- 

ber of iterations, e r ro r s  in the 1-D search, failure to generate an admissible 

trajectory on the first trial. 

SEKALF (One-Dimensional Search Subroutine) : Determines the parameters 

for the new control value in the conjugate gradient algorithm. 

in a to known values of J (a), aJ/ aa , to obtain min J(a) and then a* for J min. 

FWDINT: Subroutine performs the forward integration of the state variables 

and calls the subroutines to evaluate the cost functional and final multiplier 

values. 

RK713: 

and BAKINT. 

BAKIWT: Subroutine performs the backward integration of the state vari- 

ables and multiplier equations, and calls on GFLADFW to calculate the 

Fits a cubic 

7th Order Runga-Kutta integration scheme called by both FWDINT 
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gradients and store the value a t  each integration step. The subroutine also 

determines the new search direction. 

DERIV1: 

variables. 

DERIVZ: 

Subroutine which calculates the time derivatives of the state 

Subroutine which calculates the time derivatives of the multipliers. 

ATMOS: Calculates atmospheric parameters. 

AEROD: Calculates aerodynamic parameters. 

XLAMFN: Computes final multiplier values. 

COSTFN: Computes cost functional. 

OUTPUT: 

data. 

Subroutine called by FWDINT which prints out desired trajectory 

3 . 4  Phase I1 Program Notes 

i) The program obtains the state for the multiplier equations by in- 

tegrating the state backward from the terminal conditions of the 

forward state integration (as opposed to storing the state in the 

forward integration). 

Each iterate is terminated on an assumed tf, which is part of the 

iteration procedure. The value of tf for the base trajectory is de- 
termined by the trajectory a s  the time when the desired altitude 

ii) 

is reached (thus the program also has an altitude-cutoff capability). 

iii) See Appendix A for a listing of the Phase I Program. 



C H A P T E R  4 

PHASE I1 PROGRAM 

4.1  Basic Description 

The Phase I1 Program is designed to minimize a performance index 

which includes the following effects: 

1. Crossrange 

2.  Downrange 

3 .  Total heat 

4. Peak heating rate 

5. Final speed and flight path angle boundary conditions. 

Phase I1 Program uses a nonrotating earth centered spherical coordi- 

nate system ,with an Euler angle body-axis system to define the aerodynamic 

forces. 

Gravity 

2 5  
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The equations of motion assuming a nonrotating earth and no aero- 

dynamic moments a r e  

R = V s i n y  

b =  v cos y cos+ 
R cos+ 

& =  V cosy s in+ 
R 

p cosy + v cosy L 
Y = - R2V R +=cos p 

mv COSY 
v cosy cos$ sin+ 

R cos+ 
L 

where the drag (D) and l i f t  (L) a r e  defined by 

L = 3 pSV2 CL(cr, M) 

D = 4 psv2 CD (a, M) 

The cost functional to be minimized is: 

tf 
+ c(5)s bdt + C(6) 

f.. 2 
t 

t o  
The term J q dt is an approximate method for minimizing the peak heat rate. 

The Hamiltonian is 

H = C(5)i(R,V) + C ( 6 ) i 2 ( R , V , y )  + XI(V siny) 

(v cosy c o s + )  + x3(  v cosy sin+ 
R cos+ R + 1 2  

v cos + -+A cos p R mV 

mV cosy 
V cosy cos+ s in+ 

+ q- R cos+ 
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Forward integration of the state variables is cutoff on a desired alti- 

tude. 

4 . 2  Subroutine Map 

MAIN 

I 
W P R J C G  

I 
FWDINT -DERIVl - ATMOS -SETUP - S P L I N E  

XLAMFN - C O S T F N  - O U T P U T  

BAKINT - DERIVZ - ATMOS - S E T U P  - S P L I N E  

SEKALF 



28 

4.3 Subroutine Descriptions 

MAIN: Reads in all necessary input parameters, sets up spline interpola- 

tion of aerodynamic coefficients and calls the conjugate gradient subroutine 

WPRJCG. On Return, MAIN prints out message concerning the results of 

the iteration and prints out the control obtained by that iteration. 

A. Namelist Data 

PI = TT 

RE = radius of the earth 

XMU = p, gravitational constant 

OMEGE = not used 

AREA = aerodynamic reference area 

ECOEF = heating coefficient 

DELT = integration stepsize 

IKEY = call flag for OUTPUT 

ERRMX = not used 

ERRMN = not used 

TCUT = upper time limit on trajectory 

EPST = cutoff tolerance for norm of control change 
EPSTF = not used 

EPSA = cutoff tolerance for integration altitude cutoff 

EPSIT = cutoff tolerance on gradient norm 

ERR = cutoff tolerance for small cost change 

ITMAX = limit on number of conjugate gradient iterations 

ITMX = limit on steps in 1-D search 

KOUNTM = limit on iterations for altitude cutoff 

CSTR = guess of final cost value 

B = control bound (see SEKALF) 

C(7) = coefficients in cost functional 

DTFM = not used 
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XDTFM = not used 

SVARO(6) = initial state variables 

TO = initial time 

ALTF = cutoff altitude 

XMACH = not used 

FLTANG = not used 

GAMMF = final flight path angle 

V F  = final velocity 

XMASS = vehicle mass 

IOUT = print frequency for forward integration 

IOUTZ = print frequency for backward integration 

IPRINTl = print control flag 

IPRINT2 = print control flag 

B. Control Data 

IJKU = total number of control points 

U(IJKU, 3) = control vector and time points 

C .  Aerodynamic Data 

N l ,  N2 = dimensions of coefficient a r ray  

Y (N1 , N 2 , 2 )  = coefficient a r ray  

(See sample program for input format) 

See Chapter 3 . 3  for descriptions of: 

WPRJCG 

SEKALF 

DERIV1 

DEHIVZ 

ATMOS 

XLAMFN 

GRADFN 

COSTFN 

OUTPUT 

FWPIWT 

BAKINT 
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SETUP - SPLINE - Subroutine computes aerodynamic coefficients based 

upon piecewise cubic spline interpolation. Input is angle of attack (a) and 

Mach number (M); returned a r e  

acD/aa.  
(For test runs the aerodynamics I 

I 

the values of CL,CD, ac,/aMJ aCD/aM, 

'were approximated by: 

CD = 2 . 2  sin3& + .08  

cL = 2.2 sin'a cos a + .01.) 

4 . 4  Phase I1 Program Notes 

i) 

ii) 

iii) 

The state values for the backward integration of the multiplier 

equations a r e  stored during the forward integration (as opposed 

to backward integration for the state), The program currently 

can store the state at 999 time points. 

Al l  trajectories terminate a t  a specified, desired altitude. The 

modification to the transversality conditions is discussed in 

Chapter 2. Since the terminal time of the N + 1 trajectory, say 

t?"), may be larger than t?) (since h, is the cutoff condition) , a 
I I 

(N) (N+l)]. 
f S t f  

1 

linear extrapolation of the control is used on [t 

See Appendix B for a listing of the Phase I1 Program. 



C H A P T E R  5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1  Summary 

Two computer programs for shuttle reentry optimization have been 

developed. The programs make extensive use of subroutines so that they 

may be adapted to other atmospheric optimization problems with little dif- 

ficulty. Because of contract budget restrictions and the long flight times of 

realistic shuttle reentry trajectories, the programs have only been checked 

out with respect to programming er rors .  In the next section, suggestions 

for a study of the convergence properties of the programs w i l l  be presented. 

Also, o u r  limited experience obtained with the programs w i l l  be discussed. 

However, with respect to these comments, it should be remembered that no 

controlled study was performed, and thus, the comments a r e  somewhat 

tenuous. 

I 5 . 2  Conclusions and Recommendations 
I 

I 1. 

tories is undertaken, it is recommended that a carefully controlled 

study of numerical integration procedures be performed for reentry 

problems in which: (a) the controls a r e  piecewise linear (or possibly 

higher-order splines) in an integration step, (b) the aerodynamic data 

is given in tabular form, and (c) the vehicle is a relatively low-drag 

vehicle (e. g. , the high-crossrange shuttle). Much of our time was de- 

voted to determining an acceptable numerical integration package while 

the optimization procedure was the major goal of the study. We found 

that RK 7 - 1 3  was an excellent scheme with constant aerodynamics and 

smooth controls; however, with piecewise linear controls and spline- 

fit aerodynamics, its performance was reduced substantially. For 

this reason, a fourth-order , predictor- corrector scheme with fixed 

stepsize is employed in the Phase 11-Program. Research should be 

conducted to make the problem suitable for use with RK 7 - 1 3  (or some 

other high-order scheme) to shorten the long integration times. 

2. Because of the relatively low-drag characteristics of the 

Before an extensive analysis of the optimization of reentry trajec- 

31 
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high- cross range 

any optimization 

shuttle, arbitrary initial estimates of the controls in 

program may cause highly oscillatory trajectories. 

This is due to the fact that the path angle may become positive (posi- 

tive path angle is above the local horizontal) and oscillate about zero 

degrees. 

estimates be chosen so that y remains negative. Some investigators 

have used artificial means to insure y 5 0 ,  e. g. , impose a state vari- 

able inequality constraint, add damping to the initial iterates, increase 

the drag in tne initial iterates. This problem may be accentuated by 

an inaccurate numerical integration scheme because 9 is essentially 

the differencc between two terms of the same order of magnitude. 

Thus, 9 may become positive because of numerical e r r o r  when its true 

physical value is negative. 

Thus, it is recommended that, if possible, initial control 

3 .  Neither program uses nondimensional variables. If the rate of 

convergence is slow in simulations, nondimensionalization of the vari- 

ables may improve the rate. 

4. 

ent method to optimal control problems have been of low-dimension, 

near-linear, and fixed final time. 

In these studies, it was found that the method did not perform satis- 

factorily on a problem with tight terminal conditions2’ and a free-final 

time problem2’. 

final time problem in two different ways, trends as to which method is 

best would be useful information. 

5 .  In the Phase 11-Program, q dt is used in the performance index 

to penalize large heat rate slopes, and, thus, should aid in “flattening- 

out” the heating rate. This conjecture should be tested since if it serves 

to flatten the peak heating rate,  it might be a simple way of controlling 

peak heating rate in an on-board, optimization oriented guidance 

scheme. 

Most of the investigations which have applied the conjugate gradi- 

Two exceptions a r e  Refs. 21 and 22.  

Since the two programs of this report treat the free 

tf.. 2 

to 

6. A convenient test problem for reentry is the maximum crossrange 
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problem. 

angle of attack which causes 

near 90" and which decreases (nearly linearly) toward O b  a s  time in- 

creases to t 

IBM 360/67, a typical iterate (including the 1-D search) required about 

one minute of CPU time for a double precision, 2000 second (real-time) 

trajectory with a fixed stepsize of four seconds. 

In this problem, the optimal control should consist of an 

and a bank angle which is initially 

In our limited testing of the Phase 11-Program on the f '  

7. 

minute of CPU time. Of course, the large amount of computer time is 

mainly due to the numerical integration requirements. Hopefully, 

more efficient numerical integration schemes wi l l  be developed for use 

in conjunction with function-space gradient-type algorithms. In this 

development one should keep in mind that both forward and backward 

integrations a r e  required, and this heavily influences the choice of a 

variable stepsize integration scheme. A possibility in this direction 

is spline numerical integration schemes since they result in "global" 

information a s  opposed to discrete data. 

A s  noted above, a typical iterate requires approximately one 
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NOTE: 

approximations o r  spline-fit aerodynamics. 

this Appendix. To use the simple aerodynamic approximations, use the 

listing of pages 68-90; to use the spline-fit aerodynamics replace MAIN, 

DERIV1, and DERIVZ by the listings on pages 91-98 and add the subroutine 

SETUP (pages 93- 94). 

The Phase I1 Program is built to use either single aerodynamic 

Both listings a r e  presented in 
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